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ABSTRACT 

In [12] and [13] Jack Sonn has  in t roduced and  s tudied  a new not ion of 

equivalence for number  fields. In  this note we show tha t  "almost all" (cf. 

[14]) pairs  of equivalent number  fields are conjugate over Q, and  we s tudy  

equivalence classes of fields of pr ime degree. 

Let K be a field, G a finite group. G is called K-admiss ib le  iff there exists 

a finite dimensional K-central division algebra D which is a crossed product for 

G. Two number fields K and L are called (Sonn) -equ iva len t  iff the set of K- 

admissible finite groups and the set of L-admissible finite groups coincide. The 

following theorem was proved in [12]: 

THEOREM 1: Let K and L be equivalent numberfields. Then K and L have the 

same normal closure over Q. 

Let K be a number field and p a prime. We say p has d e c o m p o s i t i o n  t y p e  

( f l , . . . ,  f~) iff p has exactly r prime divisors of degrees f l  _> f2 ~ "'" _> f~ in 

K. Let N[Q be a Galois extension containing K and 7> be any divisor of p in 

N. The group G = G(N]Q) acts on the left cosets of U = G(N[K)  in G and it 

is well known (see [1] or [6, Lemma 1]) that for unramified P the following two 

conditions are equivalent: 

(a) p has decomposition type ( f l , . . . , h )  in K. 

(b) The Frobenius automorphism a = FN]Q(P) acts on the left cosets of U as 

a product of r disjoint cycles of lengths f l  _> f2 _> "'" _> fr  (the cycle t y p e  

of a is ( /1 , . . . ,  h ) ) .  
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THEOREM 2: Let K and L be equivalent number fields. Let N be the common 

normal closure of K and L over Q and let U, U' C G := G(NIQ ) be the respective 

fixed groups. Let a E G act on G/U and on G/U' and let ( f l , . . . , f  r) and 

(f{, . . . ,  f~) be the respective cycle types of a. Then: 

(a) r = l C ~ s = l .  

(b) If r ~- 1 or s r 1 then Yz = i~. 

(e) The action of a on the cosets of U is trivial iff the action of a on the cosets 

of U' is trivial. 

The following theorem is a reformulation of Theorem 2 in terms of decomposi- 

tion types. Note that every ~r E G is Frobenius automorphism corresponding to 

an unramified prime. 

THEOREM 2': Let K and L be equivalent number fields. For a prime p which 

is unramified in KIQ or in LIQ with respective decomposition types ( f l , . . . , f r )  

and we have: 

(a) r = l ~ s = l .  
(b) l ip is not inert in K or in L, then f2 = .f~. 

(c) p splits completely in K iff p splits completely in L. 

Proos (a) and (b) may easily be read off the proof of Theorem 1 in [12]. (e) is 

a consequence of the fact that two number fields K and L have the same normal 

closure over Q iff the sets S(KIQ ) of primes splitting completely in KIQ and 

S(L[Q) coincide up to a finite number of ramified exceptions. | 

Another fundamental equivalence relation for number fields was introduced 

and intensively studied by W. Jehne [5]. Two extensions KIk and LIk of number 

fields are called Kroneeker  equivalent over k (K ""k L), iff the Kronecker  

sets D(K[k) of finite primes of k, which have a divisor of first degree in K and 

D(LIk) coincide up to at most finitely many exceptions (which according to [6] 

do not exist). It is interesting to see, that Kronecker equivalent fields share the 

property (a) and weakened versions of the properties (b) and (c) of the following 

Remark 3. It is not even necessary to exclude ramified primes of the ground 

field k ([9]). On the other hand Kronecker equivalent fields need not have the 

same normal closure. Let LIQ be normal and KIQ be arbitrary. If K and L are 

equivalent then K C L. If K and L are Kronecker equivalent, then K D L. So 

Kronecker equivalence and equivalence are dual in some sense. 
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Two extensions KIk and LIk of algebraic number fields are called a r i thmet i -  

cally equivalent  over k (see [11], [6]) iff (almost) all primes of k have the same 

decomposition type in K and in L. K and L are arithmetically equivalent over 

Q iff their Dedekind zetafunctions coincide. Arithmetically equivalent fields are 

obviously Kronecker equivalent. Theorem 5 shows that equivalent fields of prime 

degree are arithmetically equivalent. 

Remark 3: Let K and L be equivalent number fields with common normal 

closure N over Q. For a prime p, unramified in NIQ , with decomposition types 

( f l , . . . , f r )  in g and (f~,. . . ,  f~.) in L we have: 

(a) Let i �9 {1,. . . , r}.  Then: 

Vj r  1 ==~ 3jE{1 ..... .}fi[fj. 

(b) If p has decomposition type ( f l , . . . ,  f~,, 1, . . . ,  1) in K with gcd(fi, fj)  = 

1 (i # j)  then p has decomposition type ( f l , . . . ,  fr , ,  1, . . . ,  1) in L. Only the 

number of occurrences of the residue degree 1 may be different. 

(c) Let p be inert in K[Q. Then the degrees (g :  Q) and (L: Q) coincide. 

Proof." Let G = G(N[Q), U = G(N[K), U' = G(N[L) and a = FNIQ(:P) for a 

prime divisor of p in N. We consider 

r := a h''']"''f'. 

(a),ord (a) -- lcm(f l , . . . ,  f~) implies ord (r) = fi. r is Frobenius automorphism, 

corresponding to an unramified prime 15. The decomposition type of/~ in K is 

(f~, 1, . . . ,  1). By Theorem 1, G acts faithfully on G/U and on G/U'. Now Theorem 

2 implies that ~ has a decomposition type of form (fi, 1,. . . ,  1) in L, too. 

(b) Similarly one deduces 

v gcd( f . f i )= l  V gcd(f;.f;)=l. 
i , j e{ l  ..... r} i , je{1 ..... J} 

Now (b) follows from lcm(/1, . . . ,  fr) = lcm(/I , . . . ,  f~). 

(c) follows from Theorem 2(a). | 

The following example will be used later: 
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Example 4: Let K be an algebraic number field of degree n over the rationals 

with normal closure K[Q and 

G(KIQ) = Sn or G(KIQ) = An with n odd. 

Then every field L, equivalent to K, has degree n over Q. 

Proof: Follows from Remark 3(e). | 

We now examine equivalence classes of fields of prime degree. 

THEOREM 5: Let K be a number field of prime degree p over Q and L be a field 

of arbitrary degree which is equivalent to K. Then: 

(a) (K: Q) = (Z: Q). 
(b) K and L are arithmetically equivalent over Q. 

(c) zfG = G(RIQ) is so1~ble, then K and L are conjugate over Q. 

(d) The degrees p and groups G for which non-trivial equivalence is possible 

are known by [21. 

(e) In any case we have for i E N: Ki(OK)p ~-- Ki(OL),  where Ki(OK),  de- 

notes the p-primary part of the i-th Qui//en K-group o[ the ring of integers 

of K. In particular, Cl(OK)r "~ Ul(OL)p. Moreover, the unit groups of K 

and L are isomorphic. 

Proof: (a) Let NIQ be the common normal closure of K and L. Let G = 

G(NIQ), U = G(NIK)  and U' = G(NIL). G is a subgroup of the symmetric 

group Sp, hence p does not divide #U. We choose an element a E G of order p. 

a acts on G/U without fixed points as a cycle of length p. Now (a) follows from 

Theorem 3(e). 

(b) By (a) the Sylow p-subgroups of U and U' are conjugate. Therefore (b) 

follows from [3, Theorem 2.1]. 

(c) U and U' are {py-Hall subgroups, hence conjugate. 

(d) see [21. 
(e) It is well known that for arithmetically equivalent number fields the unit 

groups coincide ([11]). The rest follows from [8]. l 

Now we consider fields of low degree: 

THEOREM 6: Let K be a number fleld of degree (K: Q) _< 5. Then every lqdd L 

which is equivalent to K is conjugate to K. 
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Proof'. It is well known that arithmetically equivalent fields of degree less than 

7 are conjugate ([11]). Because of Theorem 5 we only have to look at the case 

(g :  Q) = 4. The group G = G(/~IQ) = G(s is a subgroup of the symmetric 

group $4. The case G = S4 will be treated in the next theorem, so suppose # G  �9 

{4, 8, 12}. Theorem 5 implies (L: Q) >__ 4, consequently (L: Q) �9 {4, 6, 8,12}, and 

(L: Q) divides #G. 

# G  = 4: K and L are conjugate by Theorem 1. 

# G  = 8: Then we have (L: Q) �9 {4,8}. Let p be any prime which is unramified 

in/~IQ and M be any subfield o f / f lQ  of degree 4. The possible decomposition 

types of p in M are 

(1) (4), (2,2), (2,1,1), (1,1,1,1). 

(L: Q) = 4: Theorem 2 together with (1) implies, that K and L are arithmeti- 

cally equivalent, hence conjugate. 

(L: Q) = 8: From (1) and Theorem 2 we conclude D(K[Q) C D(LIQ) up to at 

most finitely many exceptions. Now the Theorem of M. Bauer (see [10]) yields 

the contradiction K D L. 

# G  = 12: We have (L: Q) �9 {4, 6,12}. In this case the possible decomposition 

types of unramified primes in one of the subfields of degree four of KIQ are 

(2) (4), (3, t), (2,2), (2,1,1), (1,1,1,1). 

(L: Q) = 4: Again K and L are arithmetically equivalent. 

(L: Q) �9 {6,12}: The group V = G([fIK ) = (a) is cyclic of order three and a 
acts on G/U as a 3-cycle. By Theorem 2(b), a fixes one coset of U I in G, hence 

a is contained in a subgroup conjugate to U ~ and we derive the contradiction 

3I#U'. | 

Now we are ready to prove our main theorem, which shows that "almost all" 

(cf. [14]) equivalent fields are conjugate. In the course of the proof we shall use 

ideas of N. Klingen [7]. 
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THEOREM 7: Let K be a number field with (K: Q) = n and G(/~[Q) = Sn or 

G(KIQ) = An. Then every held L which is equivalent to K is conjugate to K.  

Proof: Let G = G(/~[Q), U = G(RIK),U' = G ( R I L ) .  We regard  G as a 

subgroup of the symmetric group S(G: u) = Sn and identify the set G/U with 

{1, . . . ,  n}. Without loss of generality we may assume U = FixG(n). We consider 

three cases: 

(I) G = S .  n>_4. 

(II) G = An n > 6, n even. 

(III) G = A ,  n > 7 ,  n o d d .  

CASE (I): By Example 4 we have (G: U) = (G: U'). By Huppert ([4, p.1751) 

our assertion is true for n # 6. But it is possible to give a simple proof which 

works in all cases. For this purpose we first establish the following two facts: 

(3) U' contains a (n - 1)-cycle a = ( a l , . . . , a n - l ) .  

(4) U' contains a transposition r = (cl, c2). 

(3): G = Sn contains a , ,  which acts on G/U as a (n - 1)-cycle: The cycle 

type of al is (n - 1,1). The cycle type of al viewed as element of SG/U, is also 

(n -- 1, 1) by Theorem 2(b). There exists a E G which is conjugate to al  and 

contained in U'. Obviously a is a (n - 1)-cycle. 

(4) may be shown similarly. 

Now we define an by {1, . . . ,n}  = { h i , . . . , a , }  and take ~/E U' with T/(an) = 

aj E {a l , . . . , an -1} .  Fixu,(an) acts transitively on { a l , . . . , a n - , }  and U' acts 

transitively on {a l , . . . , an} :  U' is 2-transitive on {a l , . . . ,  an}, hence primitive. 

Now [4, II 4.5] and (4) give the contradiction U' = Sn- Hence we have U' = 

Fixs.(an).  

CASE (II): We show: 

(5) v' # An 
(6) U' contains a (n - 1)-cycle a = ( a l , . . . ,  a , -1) .  

(7) U' contains a 3-cycle ~- = (b,, b2, b3). 

(5) follows from Theorem 1. An contains a (n - 1)-cycle because n - 1 is odd. 

(6) can be shown similarly to (3). (7) is now clear. 

Let again a,, be defined by {a l , . . . ,  an} = {1,. . . ,  n}. We distinguish two cases: 
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(a): U ~ C FixA,(an).  Without  loss of generality we may assume U ~ C U. By 

(7) and Theorem 2 there exists r E U', which acts as 3-cycle on G/U and on 

G/U I. This is only possible if U = U I. 

(b): U' g: FixA.(an).  U' acts transitively on {a l , . . . , an}  = {1 , . . . ,n} .  By (6) 

it follows, that  the action of U' on ( a l , . . . ,  an} is primitive. (7) and [4, II 4.5] 

yield U I D An. Contradiction to (5). 

CASE (III):  Again we know # U  = # U  ~ and show: 

n - 1  
U ~ contains a product  of disjoint - - ~ - c y c l e s  

(8) ~ = ( a l , . . . ,  a ~ _ ~ ) ( a ~ _ ~ + , . . . , a n - , )  

(9) U' contains a (n - 2)-cycle r = (b l , . . . ,  bn-2). 

(10) u'  contains a a-cycle p = (c,, ~ ,  c~). 

It is only necessary to show (8). U = FixA. (n) contains a product  of disjoint 

n~-l_cycles, for example 

n - 1 )  n - 1  11. a ,  := (1 , . . . ,  ~ ( T  + 1,...,h- 

al viewed as element of SG/v has cycle type ( ,-12 , ,,-12 ,1), al  viewed as element 

of SG/U, has cycle type 

(f~,f~,...,f.) 
under the restrictions 

Theorem 2 

with s _~ 2 

n - 1  

/I>_/~ 

Example 4 Z f  ~ = n 
i=l 

n - 1  
Theorem 1 Icm(f~,...,f~) = 2 = ord(al). 

These re~trictions ailow o~ly (/~,. /,') = (.~I, .-I, 1). U' contains ~- element 
al, conjugate to a, of the desired form. From -~ _< 2 ~ n _< 5 we conclude 

{bl , . . . ,  bn-2} CI { a l , . . . , a a . ~  } ~ 0, and {bl , . . . ,  b,-2} N { a ~ . , + l , . . . , a , _ , }  r 0, 

thus 

(11) U' acts transitively on { a l , . . . , a , - 1 }  U {b l , . . . , b , -2}  

Again we have to distinguish two different cases: 
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(a): U' does not act transitively on {1, . . . ,n}.  Then (11) gives {bl, . . . ,bn-2} 

C. {a l , . . . , an -1}  and U' C FixAn(a,). But we already know # U '  = #U;  so U 

and U' are conjugate. 

(b): U' acts transitively on {1, . . . ,n}.  a is contained in f i xv , (an)  = V. We 

define bn-1 and b, by {bl,. . . ,bn} = {1, . . . ,n} and choose a �9 U' with a(bn) = 

an. U' contains the (n - 2)-cycle 

(b~,..., b'_2) = ~ r a - ~  = (~(b~),.. . ,  ~(bn-~)), 

which also lies in the subgroup V, which acts transitively on { a l , . . . , a n - l }  (cf. 

(11)). From Huppert [4, II 4.5] we derive the contradiction U' D An. 

This completes the proof of Theorem 7. | 
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